《分式复习》教学反思

时间:2023-12-21 16:56:58
《分式复习》教学反思

《分式复习》教学反思

身为一名刚到岗的人民教师,教学是重要的任务之一,借助教学反思我们可以快速提升自己的教学能力,那么什么样的教学反思才是好的呢?以下是小编精心整理的《分式复习》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

《分式复习》教学反思1

进入初三总复习以来,我一直都在尝试探索一种比较适合总复习课的课堂教学模式,经过近两周的教学实践,我基本形成了以下的课堂教学流程:作业评析→出示学习目标→考点分析→学生独立完成学案→小结归纳→课堂检测,今天在进行“可转化为整式方程的分式方程”的复习课时,我也是按这样的流程来进行,没想到发生了一些意外,以致于影响了整堂课的教学效果。

在作业评析环节,我照常收集学生上堂课测验及课后作业中存在的问题,由学生讲解其解答方法与思路,然后再给时间让学生自行改正。为了突出本节课与分式的化简求值的区别,我还收集了学生以往在分式的运算中容易出错的一个问题。没想到仍有相当多的学生在解答这个问题时却依然遇到了当初那样的困难,出现了同样的错误,于是我不得不已再花时间让学生自我反思与自我改正解答的方法。这样,课堂已过去了10来分钟的时间了,对后面的教学产生了直接的影响。

在学生独立完成学案的过程中,虽然我在此之前曾引导学生回顾解分式方程的一般步骤,也书写在黑板上,但我没想到的是依然有相当多的学生对解分式方程的步骤是陌生的,特别是解答过程的书写更是显得百花齐放,有个别学生甚至于无从下手。于是我不得不已用一个例题示范解答过程,这样又花去了不少的时间,导致学生在课堂教学内容难以顺利完成。

那么,是什么原因导致出现了这些意外呢?作业的评析环节为什么要花这么多的时间呢?学生为什么地分式方程的解答思路过程是如此的陌生呢?

答案并不难以找到。

一方面,在作业评析的环节里,我收集到的问题都是学生容易出错的问题或感到比较困难的问题,虽然这些问题他们都曾遇到过,但难度自然不会小,因此当需要他们再次解答时自然也就容易出现错误,因此所花的时间当然就较多了。

另一方面,学生对分式方程的解答思路方法的陌生,并不是因为分式方程的解答思路方法有多难或有多复杂,而是因为这部分内容离当初学生学习的时间太远了,而且当初在学习这部分内容时所用的课时就非常少,因此在学生的大脑中留下的印象并不深刻。

问题原因似乎找到了,那么有没有什么好的办法去解决呢?

先来看作业评析环节中出现的问题。仔细分析课前准备及教学过程中的每一个环节,再回忆当初这些问题的解答方法,我发现了问题的根源,当时在解答这些较难或较易出错的.问题时,为了赶课堂的教学时间,完成教学任务,我没有给时间让学生进行充分的交流,而是包办式的进行讲解分析,那时虽然讲解得清晰易懂,学生当时也反馈能听明白了,但当要他们真正动手时,却依然犯同样的错误。因此,缺少交流的问题讲解,虽然听懂,但不会做。同时,我选择的问题较多(3个)也是花费时间较多的原因,但如果不把这些易出错的问题都解决,那么学生所积累下的问题岂不是越来越多了?

再来看我所编写的学案吧。我本以为学生对分式方程的解答思路步骤是非常熟悉的,所以没有在学案中安排例题示范去让学生自主阅读、复习。那么,在学案中安排例题示范会不会比让学生在课堂练习过程中出现问题时再解释好些呢?我想,前者也许会省下课堂教学时间,但后者也许能给学生更深的印象,后者也许教学效果会更好。

另一方面,课前我已预测到学生可能会把分式方程的解法与分式的化简相混淆起来,很有可能什么出现在进行分式的化简时也去分母的错误。可我却在学案中忽视了编一两个分式的化简的问题,因此学生在课堂上也就无法对这两者进行了比较。

因此,在编写学案时,特别是集体备课时,必需对每一个问题进行推敲,以使学案更能发挥辅助学生复习的作用。

那么,节课剩下的问题只能在下一节课再进行解决了!

《分式复习》教学反思2

分式初中数学中重要的一章,在中考中占有一定的比重。学生已基本掌握了分式的有关知识(分式的概念、分式的基本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。

一、本章可以让学生通过观察、类比、猜想、尝试等活动学习分式的运算法则,发展他们的合情推理能力,所以复习时重点应放在对法则的探索过程上。一定要让学生充分活动起来。在观察、类比、猜想、尝试当一系列思想活动中发现法则、理解法则、应用法则,同时还要关注学生对算理的理解,以培养学生的代数表达能力、运算能力和有理的思考问题能力。可是我在知识的传授上并没有注重探索、类比法则,而重在对分式四则运算法则的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。今后要避免类似事情的发生。

二、复习中的重建

分式的运算(加、减、乘、除、乘方和混合运算)是代数恒等变形的基础之一,但是不能盲目的加大运算量与题目的难度,重点应放在对运算过程推理的理解上,把分式的基本性质做到灵活运用。

再则,对课本上关于分式的具体问题一定要重视,并关注学生在这些具体活动中的投入程度,看他们能否积极主动地参与,其次看学生在这些活动中的思维发展水平—-—能否独立思考?能否用数学语言表达自己的想法?能否反思自己的思维过程?进而发现新的问题,培养学生解决问题的能力!提高学生的学习兴趣!

《《分式复习》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式